Zinc ions block the intracellular calcium release induced by caffeine in guinea-pig taenia caeci

T. Nasu

Department of Veterinary Pharmacology, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753 (Japan) Received 10 May 1994; received after revision 3 August 1994; accepted 19 September 1994

Abstract. Zn^{2+} in low concentrations (0.005 – 0.1 mM) inhibited the transient contractions in response to caffeine (25 mM) in a dose-dependent manner in smooth muscle of intact guinea-pig taenia caeci. At Zn^{2+} concentrations higher than 0.1 mM, caffeine did not elicit any response. After saponin-treatment of the fibres, which leaves the Ca^{2+} storage sites intact, caffeine contraction was completely inhibited by Zn^{2+} at a relatively low concentration (0.03 mM). However, in Triton-X-100-treated fibres, in which the Ca^{2+} release sites are destroyed, the contraction could be induced in the presence of Zn^{2+} by an increase in Ca^{2+} . In conclusion, Zn^{2+} can block the intracellular Ca^{2+} release from caffeine-sensitive release sites in taenia caeci.

Key words. Zinc ions; caffeine; calcium store; smooth muscle.

An increase in cytoplasmic Ca²⁺, the primary trigger for contraction in smooth muscle, occurs as the result of an influx of extracellular Ca²⁺ or the release from intracellular Ca²⁺ storage sites¹⁻⁴. There are two mechanisms for the release of Ca²⁺ from the intracellular stores, namely Ca²⁺-induced Ca²⁺ release (CICR) and inositol 1,4,5-triphosphate (IP₃)-induced Ca²⁺ release⁵⁻⁷.

Zinc ions (Zn^{2+}) block the tonic response to K^+ (60 mM) by inhibition of Ca^{2+} influx through voltage-operated Ca^{2+} channels in the cell membranes in the taenia caeci muscle⁸. I also suggested earlier⁹ that Zn^{2+} did not affect the first phasic response to carbachol or histamine, since it did not inhibit the Ca^{2+} release from intracellular storage sties. However, Ca^{2+} storage sites were not re-supplied in the presence of Zn^{2+} .

Caffeine has been shown to evoke a transient contraction mediated by Ca^{2+} release from stores in the ileum^{3,6,10}. The present study was undertaken to examine the effects of Zn^{2+} on CICR induced by caffeine in intact and skinned taenia caeci, in an attempt to further define the role of CICR in smooth muscle contraction.

Materials and methods

Strips of taenia caeci were isolated from the caecum of male Hartley strain guinea-pigs, body weight 400 g, and were immersed in modified normal Tyrode's solution bubbled with 100% O_2 at 37 °C. The solution contained (mM): NaCl 123.7, KCl 2.7, CaCl₂ 2.5, MgCl₂ 1.0, tris(hydroxymethyl) aminomethane 25 and glucose 5.5. The pH of the solution was adjusted to 7.4 with HCl at 37 °C. Effects of Zn²⁺ on contraction induced by caffeine in intact muscle were studied in thick fibres (1 mm in width \times 2 cm in length). The muscle strips were suspended at a resting tension of 0.6 g and allowed to equilibrate for 40 min with several changes of normal solution. Isometric contraction of the muscle was mea-

sured by a strain gauge transducer (Nihon Kohden, RM-6000). After equilibration, the muscles were conditioned by adding 40 mM K $^+$. Caffeine was directly dissolved in the bathing solution. An appropriate amount of 0.5 or 3 mM ZnCl $_2$ stock solution dissolved in distilled water was added to the bathing solution to obtain the experimental Zn $^{2+}$ concentrations.

For the test of the effects of Zn2+ on Ca2+ release from Ca2+ storage sites, thin muscle fibres (0.3 mm in width × 8 mm in length) were mounted horizontally in a bath containing a relaxing solution at 24 °C and were skinned with saponin (50 µg/ml) for 30 min. The composition of the relaxing solution was: 130 mM K-propionate, 4 mM MgCl₂, 4 mM Na₂ATP, 10 mM creatine phosphate, 10 U/ml creatine phosphokinase, 1 mM NaN₃, 4 mM EGTA and 20 mM trismaleate (pH 6.7). Solutions with the required Ca²⁺ concentrations were prepared by adding appropriate amounts of CaCl₂ to the relaxing solution containing 2 mM EGTA. The Ca²⁺ concentrations were calculated using the apparent binding constant of the Ca-EGTA complex of $1.6 \times 10^6 \,\mathrm{M}^{-1}$ at pH 6.7 (ref. 11). Skinned strips were contracted by changing to a contraction solution of pCa 5 for 10 min, and were subsequently relaxed by placing them in a relaxing solution containing 0.5 mM EGTA. Thereafter, ATP and creatine phosphate were excluded in order to eliminate re-uptake of Ca²⁺ into the Ca²⁺ storage sites. After pretreatment with 0.03 mM Zn²⁺ for 10 min in the relaxing solution without ATP, creatine phosphate and EGTA, caffeine was added first and IP, was subsequently added.

In order to obtain fibres in which the Ca^{2+} release sites had been destroyed, muscles were skinned in a relaxing solution containing 1% Triton-X-100 for 1 h. The Zn^{2+} concentrations were calculated by the use of the apparent binding constant of Zn-EGTA of $10^{8.42} M^{-1}$ (ref. 12). The fibres were pretreated by Zn^{2+}

(0.03 mM) for 10 min before the application of Ca^{2+} (pCa 5).

The following drugs were used: caffeine, saponin, Triton-X-100 (Wako Pure Chemicals, Japan) and IP₃ (Sigma, USA).

Results

Caffeine (25 mM) induced rapid transient contraction in taenia caeci. The maximal tension in response to 25 mM caffeine was $97.2 \pm 3.1\%$ (n = 30) of the phasic response to K⁺ (60 mM). In the presence of 0.01 mM Zn²⁺ for 30 min, the first response to caffeine was reduced to $52.5 \pm 5.0\%$ (n = 12) of the control response. After the washing out of caffeine in the presence of 0.01 mM Zn²⁺, the second response was further reduced to $25.0 \pm 5.1\%$ (n = 12) of the control. With higher concentrations of Zn²⁺, the responses to caffeine were progressively reduced and, with 0.1 mM, virtually extinguished (fig. 1A and B).

In saponin-treated fibres, after loading of the storage sites with a Ca²⁺-containing solution (pCa 5), 25 mM caffeine was first added, and after a 3 min interval, after washing out of the caffeine, 10 µM IP₃ was subsequently added without intervening Ca²⁺ loading. Both

25 mM caffeine and $10 \,\mu\text{M}$ IP₃ elicited transient contraction, which showed maximal tension development of 9.3 ± 0.17 mg (n = 12) or 7.2 ± 0.16 mg (n = 12), respectively (fig. 2A-a). In another preparation of saponin-treated fibres, after pretreatment with $0.03 \, \text{mM} \, \text{Zn}^{2+}$, 25 mM caffeine did not elicit any response. However, $10 \, \mu\text{M} \, \text{IP}_3$ subsequently induced a transient contraction of $68 \pm 5.4\%$ (n = 10) of the control tension (fig. 2A-b).

In Triton-X-100-treated fibres, in which Ca²⁺ release sites had been destroyed, contractions induced by 10^{-5} M Ca²⁺ reached a maximal value of 11.1 ± 0.21 mg (n = 14) within 2 min. In another preparation of Triton-X-100-treated fibres, contraction induced by 10^{-5} M Ca²⁺ in the presence of 0.03 mM Zn²⁺ was 10.6 ± 0.23 mg (n = 10). Thus, 0.03 mM Zn²⁺ did not significantly affect the contractions induced by 10^{-5} M Ca²⁺ (fig. 2B).

Discussion

Caffeine has been shown to elicit a transient contraction in vascular smooth muscle^{15,16} accompanied by an increase in cytosolic Ca²⁺ levels² measured by the use of fura-2 in Ca²⁺-deficient solution. Bolton and Lim³

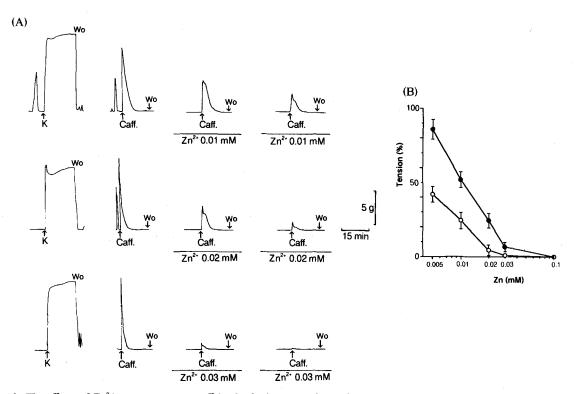


Figure 1. The effects of Zn²⁺ on responses to caffeine in the intact taenia caeci.

A In each row, the first response to K^+ (60 mM, hypertonic) and the second to caffeine (25 mM) are controls. Muscles were preincubated for 30 min in Zn^{2+} -containing medium. Following application of caffeine in the presence of Zn^{2+} for 15 min, the muscles were washed with medium containing Zn^{2+} for 30 min. Caffeine was then reapplied in the presence of Zn^{2+} for 15 min. K: K^+ (60 mM); Caff: Caffeine (25 mM); Wo: Wash-out.

B The first (\bullet) and second (\bigcirc) responses stimulated by caffeine in the presence of Zn^{2+} were calculated as percentages of the respective responses to caffeine in the absence of Zn^{2+} . Each point represents the mean \pm S.E. of 12 experiments.

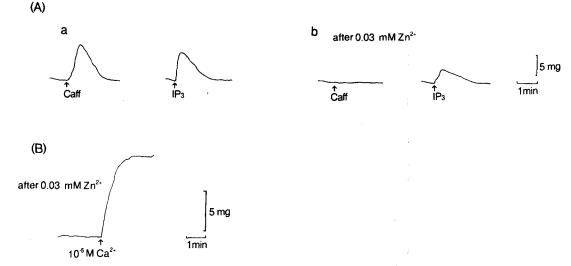


Figure 2. Effects of Zn^{2+} on contraction in skinned taenia caeci. Each curve is a tracing from an actual experiment. A (a) Saponin-treated fibres were contracted by changing to a contracting solution of pCa 5 for 10 min, and subsequently relaxed by a relaxing solution containing 0.5 mM EGTA (data not shown). Experiment in (a) was done in the same way as in (b) in the absence of Zn^{2+} . (b) After the loading with Ca^{2+} in the intracellular Ca^{2+} storage sites, 0.03 mM Zn^{2+} was present for 10 min. Caffeine at 25 mM was then added and subsequently, with a 3 min interval for the washing out of caffeine in the presence of Zn^{2+} , 10 μ M IP₃ was added to the skinned fibres. The caffeine- and the following IP₃-addition after Ca^{2+} loading was done only once in each batch of saponin-treated fibres. Caff: Caffeine (25 mM); IP₃: IP₃ (10 μ M).

B Muscle was skinned with Triton-X-100. The fibres were pre-treated with $0.03 \text{ mM } Zn^{2+}$ for 10 min before application of Ca^{2+} (pCa 5).

showed in single dispersed ileal cells that caffeine accelerated discharge of spontaneous transient outward currents which could represent Ca²⁺ release from intracellular storage sites. Iino et al.⁶ and the present results showed that caffeine elicited contraction in the skinned taenia caeci after loading of Ca²⁺ into the storage sites. Furthermore, caffeine greatly enhanced the amount of Ca²⁺ released from the Ca²⁺ storage sites in taenia caeci after Ca²⁺-induction¹⁷. These findings support the suggestion that caffeine elicits a transient contraction by enhancing-CICR from the intracellular Ca²⁺ storage sites in smooth muscles.

The present results demonstrated that Zn2+ (0.005-0.1 mM) dose-dependently inhibited the first response to caffeine in intact taenia caeci. Zn2+ further inhibited the response to a second application of caffeine. In addition, in fibres treated with saponin, which makes the surface membrane permeable to ions but leaves the Ca2+ storage sites intact, Zn2+ inhibited contraction in response to caffeine after loading of Ca2+ into the storage sites. Furthermore, in intact taenia caeci cells, Zn²⁺ appears to cross the surface membrane, as deduced from the measurement of zinc uptake and efflux8. These results suggest that Zn²⁺ can block the intracellular Ca2+ release from caffeine-sensitive sites. In Triton-X-100-treated fibres, in which Ca2+ release sites are destroyed, Zn²⁺ had no effect on the 10⁻⁵ M Ca²⁺-induced contraction, suggesting that Zn2+ did not inhibit the contractile elements.

In contrast, the phasic response to carbachol or histamine was produced in the presence of a higher concentration of Zn²⁺ (0.3 mM) in intact taenia caeci⁹. It is known that IP₃ in response to activation of receptors by carbachol or histamine induced Ca²⁺ release from the storage sites^{5,7,13,14}, which results in an initial ileal phasic contraction. In the present report, Zn²⁺ had little effect on the contraction in response to IP₃ compared to that of caffeine in the ileal skinned fibres after loading of Ca²⁺ into the storage sites. It is suggested that the intracellular Ca²⁺ release from caffeinesensitive release sites was more sensitive to Zn²⁺ than those sensitive to IP₃ when stimulated by carbachol or histamine.

In conclusion, Zn^{2+} at relatively low concentrations can block the intracellular Ca^{2+} release from caffeine-sensitive release sites in taenia caeci. These experiments suggest that Zn^{2+} might be a useful tool in analyzing force activation in smooth muscle because it distinguishes between caffeine- and IP_3 -sensitive Ca^{2+} release sites.

- Chiu, A. T., McCall, D. E., and Timmermans, P. B. M. W. M. Eur. J. Pharmac. 127 (1986) 1.
- 2 Sato, K., Ozaki, H., and Karaki, H., Naunyn-Schmiedeberg's Archs Pharmac. 338 (1988) 443.
- 3 Bolton, T. B., and Lim, S. P., J. Physiol. 409 (1987) 385.
- 4 Mitsui, M., and Karaki, H., Am. J. Physiol. 258 (1990) C787.
- 5 Iino, M., Biochem. biophys. Res. Commun. 142 (1987) 47.
- 6 Iino, M., Kobayashi, T., and Endo, M., Biochem. biophys. Res. Commun. 152 (1988) 417.
- 7 Komori, S., and Bolton, T. B., J. Physiol. 433 (1991) 495.
- 8 Nasu, T., Experentia 49 (1993) 865.
- 9 Nasu, T., Experentia 50 (1994) 717.
- 10 Pacaud, P., and Bolton, T. B., J. Physiol. 441 (1991) 477.

- 11 Portzehl, H., Caldwell. P. C., and Rüegg, J. C., Biochem. biophys. Acta 79 (1964) 581.
- 12 Anderegg, G., in: Stability Constants of Metal Ion Complexes, p. 733. Eds L. G. Sillén and A. E. Martell. Alden Press, Oxford 1971.
- 13 Somlyo, A. V., Bond, M., Somlyo, A. P., and Scarpa, A., Proc. natl Acad. Sci. USA 82 (1985) 5231.
- 14 Kobayashi, S., Gong, M. C., Somlyo, A. V., and Somlyo, A. P., Am. J. Physiol. 260 (1991) C364.
- 15 Ito, K., Takakura, S., Sato, K., and Sutko, J. L., Circulation Res. 58 (1986) 730.
- 16 Noguera, M. A., and D'Ocon, M. P., Naunyn-Schmiedeberg's Archs Pharmac. 345 (1992) 333. 17 Iino, M., J. gen. Physiol. 94 (1989) 363.